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We show that any cosmological relic with small self-interactions becomes a superfluid shortly
after decoupling, due to the broadening of its wave packet, and lack of any elastic scattering. The
dynamics of a superfluid are given by the excitation spectrum of bound state quasi-particles, rather
than the center of mass motion of constituent particles. If this relic is a fermion with a repulsive
interaction mediated by a heavy boson, such as the Z0 with neutrinos or dark matter, the condensate
has the same quantum numbers as the vierbein of General Relativity. Because there exists an
enhanced global symmetry SO(3, 1)space×SO(3, 1)spin among the fermion’s self-interactions, broken
only by it’s kinetic term, the long wavelength fluctuations around this condensate is a Goldstone
graviton. A gravitational theory exists in the low energy effective theory below the weak scale.
These dynamics are an unavoidable consequence of the Standard Model.

INTRODUCTION

In the early universe, relics including photons, neutri-
nos and dark matter evolve out of thermal equilibrium as
their interaction strength becomes small at low tempera-
ture in a process known as “freeze-out”. This calculation
is essentially classical, assuming particles are point-like
and using the Boltzmann equation. [6, 14]

After freeze-out the number density of particles is
fixed, and the temperature just evolves with Hubble ex-
pansion. Their time evolution is given only by the free
particle kinetic term. It is usually assumed that the in-
teraction strength is so weak that it can be neglected
and that particles remain localized point particles for-
ever. The free particle Hamiltonian propagates the par-
ticle and also broadens its wave packet, described by its
uncertainty ∆x. This is due to the fact that the localiza-
tion of particles causes them to not be an eigenstate of
the Hamiltonian for massive particles.

There are two limits of interest for the particle un-
certainty ∆x. The free particle approximation is given
by ∆x � n−1/3. Elastic scattering collisions and the
Boltzmann equation describe this system. The opposite
limit, ∆x� n−1/3 is the quantum liquid approximation.
Because particles have wave function overlap with their
neighbors, one must take into account collective effects
due to contact interactions. If there exists an attractive
interaction in any partial wave, then the vacuum energy
can be lowered by forming bound state quasi-particles.
The system will undergo a phase transition to a super-
fluid phase, described by the quasi-particles.

If the system contains global symmetries that are bro-
ken when the system becomes a superfluid, then gold-
stone bosons will emerge. As these are massless, their
dynamics are extremely important. The global symme-
tries we will be concerned with are the SO(3, 1) coor-
dinate space Lorentz symmetry, and the SO(3, 1) spin
Lorentz symmetry.

The idea of gravity emerging from spinors is not new
and fairly obvious, as one can construct a spin-2 parti-

cle as the direct product of spinors [10, 12]. However
no workable theory has been yet constructed. The first
idea of this type is due to Bjorken [1], who attempted to
formulate the photon and graviton as a composite state.
The most recent attempt and the most successful is due
to Hebecker and Wetterich [7, 16]. Their theory can be
regarded as a reformulation of gravity in terms of spinors,
but they give no dynamics for the spinors which would
lead to such a theory. Furthermore the global symmetry
structure of their theory is different from the one pre-
sented here. This line of research was largely killed by
the paper of Weinberg and Witten [15], which showed
that a spin-2 particle could not couple to a covariant
conserved current. Two ways out of this theorem are to
quantize geometry (the approach of String Theory), or
to abandon diffeomorphism invariance as an exact sym-
metry. Sakharov originally suggested that the graviton
could be emergent, and in such theories, diffeomorphism
invariance can only be approximate [13].

QUANTUM LIQUID TRANSITION

The quantum liquid regime for a fluid occurs when

∆x� n−1/3. (1)

In this limit the system is not classical, and the condition
of scattering theory that the impact parameter b � ∆x
cannot be satisfied (often known as the “well-localized”
assumption).

The expansion of a free particle wave packet in time is

∆x(t)2 = ∆x2
0 + ∆v2t2. (2)

This can be intuitively understood because different mo-
mentum components may move with different velocities.
The wave number at p + ∆p has a velocity (p + ∆p)/E
while the wave number at p−∆p has a smaller velocity
(p − ∆p)/E and these two wave numbers may separate
in space as they propagate.
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The condition for the time-independent superfluid
transition can be derived by neglecting the second term
of Eq. 2. In the nonrelativistic limit one arrives at

T <
λ2n2/3

3mkB
. (3)

The cross-section does not enter into this calculation,
and the uncertainty ∆x0 is assumed to be proportional
to the thermal de Broglie wavelength, ∆x0 = λ/p =
λ/
√

3mkT , where λ is an O(1) parameter reflecting how
“localized” the state is. This temperature may be further
suppressed by elastic collisions, which must occur fre-
quently enough to keep particles localized to their ther-
mal de Broglie wavelength, but not so often that they
destroy the condensate.

In the relativistic case, we also use Eq. 2, however the
velocity uncertainty for relativistic states is

∆v =
∆p
E

(1− v2) (4)

where v = p/E. This correctly reflects the relativistic
limit, v → c; massless wave packets do not broaden as
each wave number propagates with the same velocity,
v = c.

The relevant time scale for wave packet broadening is
the mean time between collisions τ = 1/σnv since the un-
certainty of a wave packet ∆x0 is set by the 3-momentum
of an elastic scattering collision. The condition for a
quantum liquid is then

1
p2

+
(1− v2)2

σ2n2
>

1
λ2n2/3

. (5)

In the limit that the first term on the left side is small
compared to the second (e.g. for decoupled relics with σ
small), the condition is independent of temperature:

σ <
λ(1− v2)
n2/3

. (6)

Thus, for any decoupled cosmological relic, it becomes
a quantum liquid when its cross section is approximately
less than the square of the inter-particle separation. This
occurs faster for non-relativistic relics v → 0 than rela-
tivistic ones v → 1, and can be delayed if collisions are
“well-localized” relative to the inter-particle separation
(λ→ 0).

This condition (Eq.6) is extremely well satisfied for
massive neutrinos and WIMP dark matter, so that to-
day, massive dark matter and at least two neutrino mass
eigenstates are definitely quantum liquids.

If attractive contact interactions exist, the system will
make a phase transition to a super-fluid in exactly the
same way as a BCS superconductor or 3He. For WIMP
dark matter, the required contact interaction occurs by
integrating out any heavy particles which couple the
WIMP to the SM.

Collisions are so rare that they don’t break up the
collective excitations of the super-fluid, and the relevant
condensation criterion is not given by the thermal wave-
length (Eq. 3) but rather the time-expanded wave packet
as in Eq. 6.

An important implication of this result is that non-
relativistic relics such as Dark Matter must be treated
as super-fluids. The N -body simulations with point par-
ticles propagating in the galaxy, and giving rise to the
flattening of galactic rotation curves is a calculation rest-
ing on the assumption that dark matter particles are lo-
calized, which is incorrect. The time evolution of non-
interacting quantum states is important, as are the in-
frared divergences on the Fermi surface caused by in-
finitesimal attractive interactions.

THE KOHN-LUTTINGER EFFECT

Beyond wave-function overlap, a necessary condition
for a super-fluid state is the existence of a ground state
with lower energy than the original vacuum Lagrangian.
In the case of an attractive 4-fermion interaction, there
obviously exists a lower energy ground state where the
fermions bind into s-wave quasi-particles. For Dark Mat-
ter theories this is a possibility.

However for the Standard Model, neutrino self-
interactions are repulsive.[2] Thus there is no s-wave con-
densate. However Kohn and Luttinger showed [9] that
even a repulsive quantum liquid cannot behave as a clas-
sical gas. The reason is that at one loop, 4-point inter-
actions induce a singularity at the Fermi surface that is
attractive.[3, 8] Since higher partial wave interactions are
exponentially suppressed relative to the s-wave, and this
correction scales only as l−4, for some large l this cor-
rection dominates. For cosmological relics this can occur
already in the p wave.

The relevant correction comes from an exchange (box)
diagram and its contribution to the BCS potential V (x)
in the lth partial wave is

δVl = (−1)l+1mpF
4π2

|V (cos θ = −1)|2

l4
(7)

where pF = (3πn)1/3 in terms of the number density n.
This is attractive for odd l, in terms of the tree-level po-
tential V (cos θ) evaluated on the Fermi surface. The rel-
evant divergence occurs for cos θ = −1 and corresponds
to an exchange of the propagating neutrino with a back-
ground neutrino. The divergence occurs at 2pF because
it occurs in the internal loops, which contain two fermion
propagators, both of which must lie on the Fermi surface.

The effective potential in the p-wave for neutrinos on
the Fermi surface is then

V1 =
g4
ZmpF

4π2M4
Z
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where gZ is the self-coupling of neutrinos and MZ is the
mass of the Z boson. This is parametrically O(p2

FG
2
F ).

Therefore this condensation is a much more important
effect than scattering, which is associated with the mean
free path and is O(p5

FG
2
F ). Note that V1 is also para-

metrically the same order as Newton’s constant GN , and
while firm predictions cannot yet be made because m and
pF are not measured, this is the correct order of magni-
tude to be the actual GN .

Therefore, an attractive self-interaction always exists
in a neutrino or dark matter fermionic fluid, regardless
of the sign of the fundamental interaction. If the mass
is sufficiently small so that the conditions of the previ-
ous section are also satisfied, then such cosmological relic
is a super-fluid today. The two heavier neutrino species
and WIMP dark matter, are super-fluids today. Lighter
species such as axions and the lightest neutrino (if suffi-
ciently light) would require an early-universe analysis to
determine if the conditions of the previous section can be
satisfied.

CONDENSATES

The condensates for a fermionic quantum liquid are
dictated by Lorentz invariance. A Weyl fermion con-
denses as ( 1

2 , 0) ⊗ ( 1
2 , 0) = (0, 0) ⊕ (1, 0) according to

their representation under the spin Lorentz group. This
gives the one-derivative bilinears

Aµ(x, y) =
i

2
(∂̃µχεξ − χε∂̃µξ); (8)

Eaµ(x, y) =
i

2
(∂̃µχ†σaξ − χ†σa∂̃µξ), (9)

where ∂̃µ represents the deviation in momentum from the
Fermi surface, p0 = 0, |~p| = 2pF . In condensed matter
nomenclature, these excitations are “zero-sound”.

The four-point operator for these two condensates is
the same since they are related by a Fierz transformation,
therefore we may write it as

−g
4
ZmpF

4π2M4
Z

∫
xy

[
(1− ην)Ea†µ E

µ
a + ηνA

†
µA

µ
]
. (10)

where

ην =
nν − nν
nν + nν

(11)

is the asymmetry between neutrinos and anti-neutrinos.
After the phase transition (Eq.6) has occured, the orig-
inal Fermi gas is described by momentum distribution
functions for Aµ and Eaµ, rather than original one for
free fermions.

The condensate Eaµ contains both particles and an-
tiparticles, while Aµ contains only particles (or antiparti-
cles). Therefore, Aµ only condenses among the unpaired

particles that don’t have an antiparticle partner. The
Cosmic Neutrino Background (CNB) is expected to con-
tain very nearly equal numbers of neutrinos and anti-
neutrinos. The asymmetry ην is proportional to the
baryon to photon ratio, ηb ∼ 6 × 10−10. Therefore Eaµ
is the dominant condensate and the dynamics of Aµ are
strongly sub-leading. A right-handed neutrino state (if
they are Dirac) has interactions that are much weaker
than the left-handed state, and can be ignored. Likewise,
repulsive Majorana dark matter such as a bino is usually
not assumed to have any matter/antimatter asymmetry
and again can be treated as a single weyl spinor super-
fluid which condenses into Eaµ.

LORENTZ BREAKING

The condensation of Aµ and Eaµ breaks Poincaré in-
variance, since both fields have Lorentz indices. This
symmetry breaking is dynamical and spontaneous, due
to the condensation in a physical background. The fun-
damental theory is Poincaré invariant. As a consequence
of the symmetry breaking, both are Goldstone bosons.
Aµ corresponds to a relative gradient in the wave func-
tion of two neutrinos. An expectation value for Aµ rep-
resents a deviation from constant wave functions, and an
expectation value for Eaµ represents a gradient in the spin
density distribution. As such, the expectation value for
both is due to the primordial density fluctuations. Long
wavelength fluctuations about the expectation values for
Aµ and Eaµ are gapless goldstone bosons.

A free fermion ψ(x) transforms with two Lorentz sym-
metries. The first is defined on the coordinates of space-
time, with the generators

Lµν = i(xµ∂ν − xν∂µ).

Under this symmetry ψ transforms as a scalar. The sec-
ond Lorentz symmetry is defined with the generators

Sab =
i

2
(γaγb − γbγa)

under which ψ transforms in the 1/2 (spinor) represen-
tation. Normally we consider these to be two different
representations of the same SO(3, 1) Lorentz symmetry.
The Lagrangian will not necessarily be symmetric un-
der both groups separately. We will write always Greek
indices for the space-time Lorentz group, and Roman in-
dices for the spinor Lorentz group to indicate the differ-
ence. Since both groups contain the Minkowski metric
ηµν and ηab, we will use this to raise and lower indices.
The fundamental vacuum theory is Lorentz invariant and
has no classical GR background.

A priori, there is no reason these two different groups
with different generators should be identified. Since they
commute and obey the same algebra, one can therefore
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define the mixed generators

Mµν = Lµν + Sabδ
a
µδ
b
ν ; Nµν = Lµν − Sabδaµδbν (12)

as is usual in Field Theory. The new operator Nµν is the
broken generator, and corresponds for a massless fermion
to local violations of being in a helicity eigenstate. A
plane wave could be a helicity eigenstate, but a local-
ized state is not an energy or momentum eigenstate, and
therefore is also cannot be a helicity eigenstate unless it is
completely delocalized. We have written the mixed gen-
erators in a suggestive way using δaµ which allows us to tie
together indices from the two groups. For this symme-
try breaking to occur, there must be an order parameter
which gets a vacuum expectation value proportional to
δaµ. The indices of δaµ indicate that the field breaking
this symmetry must transform as a vector under both
symmetries.

Now we must ask what symmetry is obeyed by the
effective action. Neutrino self-interactions are mediated
by the Z boson. In the Feynman gauge we may write the
tree level effective 4-point operator as

− g2

2M2

∫
xy

{
χ†σaχξ†σaξ

}
. (13)

This interaction has the enhanced symmetry SO(3, 1)×
SO(3, 1). The only term that breaks this enhanced sym-
metry is the fermion’s kinetic term, which ties together
a derivative and a gamma or sigma matrix of the spin
Lorentz group.

i

∫
x

χ†σµ∂µχ =
∫
xy

Eaµδ
µ
a δ

4(x− y) (14)

However this term is a tadpole for the condensate Eaµ. As
such, when Eaµ condenses, the minimum of the effective
action must be shifted Eaµ → Ẽaµ to remove this tadpole,
and Ẽaµ is the order parameter of the SO(3, 1)×SO(3, 1)
symmetry breaking. In the limit that Ẽaµ → 0, the effec-
tive action has this enhanced symmetry (and the fermion
has no kinetic energy).

By goldstone’s theorem, a vacuum expectation value
for Eaµ not only breaks the symmetry SO(3, 1) ×
SO(3, 1) → SO(3, 1), but also generates goldstone
bosons from the broken symmetry generators. Here care
must be taken because the number of goldstones is not
the same as the number of broken generators, because
the broken symmetry is a spacetime symmetry. [4, 5, 11]

The goldstones are the long-wavelength fluctuations of
the order parameter Ẽaµ, and carry a representation of
the unbroken group Mµν . The field Ẽaµ however carries
an index of both the original groups. The propagating
goldstone is

gµν = ẼaµẼ
b
νηab (15)

which we identify as the graviton. This should be familiar
from the Palatini formalism for quantizing gravity, if we
identify Ẽaµ as the vierbein (tetrad).

The gravitational theory arising here does not con-
flict with the Weinberg-Witten Theorem [15] because
of the presence of a physical background, and conse-
quently this theory isn’t diffeomorphism invariant. While
a spin-2 field cannot couple to a conserved current in flat
Minkowski space, the presence of the background, and
the fact that Eaµ is a fluctuation in that background mean
that this graviton does not live in Minkowski space. It
only lives in the curved space defined by its density and
spin distribution.

From here one can almost directly follow the program
of “Spinor Gravity” [7, 16], with the exception that we
consider matter transforming under SO(3, 1) with Lµν ,
and therefore we have the metric ηµν with which to tie up
spacetime indices, where the program of Spinor Gravity
uses GL(4) instead of SO(3, 1), as a consequence they do
not have a spin connection, where we can define the spin
connection with g̃ab = EaµE

b
νη
µν in the usual way

ωabµ = Eaν∂µE
νb + EaνE

σbΓνσµ. (16)

The existence of ηµν implies more invariants as well.
However due to the global rather than local Lorentz in-
variance of the spinor index, the present theory has tor-
sion.

ACKNOWLEDGEMENTS

We thank Bruce Campbell, Steve Carlip, Jessica De
Haene, Francois Gelis, Patrick Huber, Nemanja Kaloper,
Alessio Notari. Thomas Schwetz, Steve Sekula, Edward
Witten, and Jure Zupan for useful comments.

∗ bob.mcelrath@cern.ch

[1] J. D. Bjorken. A dynamical origin for the electromagnetic
field. Annals of Physics, 24:174–187, October 1963.

[2] D. G Caldi and Alan Chodos. Cosmological neutrino
condensates. hep-ph/9903416, March 1999.

[3] D. V. Efremov, M. S. Mar’enko, M. A. Baranov, and
M. Yu Kagan. Superfluid transition temperature in a
fermi gas with repulsion. higher orders perturbation the-
ory corrections. SOV.PHYS.JETP, 90:861, 2000.

[4] J. Goldstone. Field Theories with Superconductor Solu-
tions. Nuovo Cim., 19:154–164, 1961.

[5] Jeffrey Goldstone, Abdus Salam, and Steven Weinberg.
Broken Symmetries. Phys. Rev., 127:965–970, 1962.

[6] Kim Griest and David Seckel. Cosmic asymmetry, neutri-
nos and the sun. Nuclear Physics B, 283:681–705, 1987.

[7] A. Hebecker and C. Wetterich. Spinor gravity. hep-
th/0307109, July 2003. Phys.Lett. B574 (2003) 269-275.

[8] M. Yu. Kagan and A. V. Chubukov. Possibility of a
superfluid transition in a slightly nonideal fermi gas with



5

repulsion. Pis’ma Zh. Eksp. Teor. Fiz., 47(10):525–528,
May 1988.

[9] W. Kohn and J. M. Luttinger. New mechanism for su-
perconductivity. Phys. Rev. Lett., 15(12):524–526, Sep
1965.

[10] Per Kraus and E. T Tomboulis. Photons and gravitons
as goldstone bosons, and the cosmological constant. hep-
th/0203221, March 2002. Phys.Rev. D66 (2002) 045015.

[11] Ian Low and Aneesh V. Manohar. Spontaneously broken
spacetime symmetries and Goldstone’s theorem. Phys.
Rev. Lett., 88:101602, 2002.

[12] Hans C. Ohanian. Gravitons as goldstone bosons. Phys-

ical Review, 184:1305, 1969.
[13] A. D. Sakharov. Vacuum quantum fluctuations in curved

space and the theory of gravitation. Sov. Phys. Dokl.,
12:1040–1041, 1968.

[14] Mark Srednicki, Richard Watkins, and Keith A. Olive.
Calculations of relic densities in the early universe. Nu-
clear Physics B, 310:693–713, December 1988.

[15] Steven Weinberg and Edward Witten. Limits on Massless
Particles. Phys. Lett., B96:59, 1980.

[16] C. Wetterich. Gravity from spinors. hep-th/0307145,
July 2003. Phys.Rev. D70 (2004) 105004.


